Amino-modified diamond as a durable stationary phase for solid-phase extraction.

نویسندگان

  • Gaurav Saini
  • Li Yang
  • Milton L Lee
  • Andrew Dadson
  • Michael A Vail
  • Matthew R Linford
چکیده

We report the formation of a highly stable amino stationary phase on diamond and demonstrate its use in solid-phase extraction (SPE). This process consists of spontaneous and self-limiting adsorption of polyallylamine (PAAm) from aqueous solution onto oxidized diamond. Thermal curing under reduced pressure or chemical cross-linking with a diepoxide was shown to fix the polymer to the particles. The resulting adsorbents are stable under even extreme pH conditions (from at least pH 0-14) and significantly more stable than a commercially available amino SPE adsorbent. Coated diamond particles were characterized by X-ray photoelectron spectroscopy (XPS) and diffuse reflectance Fourier transform-infrared spectroscopy (DRIFT). Model silicon surfaces were characterized by spectroscopic ellipsometry and wetting. Solid-phase extraction was demonstrated using cholesterol, hexadecanedioic acid, and palmitoyloleoylphosphatidylcholine as analytes, and these results were compared to those obtained with commercially available materials. Breakthrough curves indicate that, as expected, porous diamond particles have higher analyte capacity than nonporous solid particles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of Lead and Cadmium in Various Food Samples by Solid Phase Extraction Using a Novel Amino-Vinyl Functionalized Iron Oxide Magnetic Nanoparticles

A facile method for synthesis of amino functionalized silica coated Fe3O4 magnetic nanoparticles is introduced. For this purpose, the surface of magnetic nanoparticles (MNPs) was modified with two precursors of silica which produced amine and vinyl functional groups on the surface of magnetic nanoparticles. The modified magnetic nanoparticles were characterized by transmission electron micr...

متن کامل

Chemically-Modified Activated Carbon with L-Arginine for Selective Solid Phase Extraction and Preconcentration of Metal Ions

In this study, a new sorbent of chemically-modified activated carbon with L-arginine (AC-Arg) has been produced as solid-phase extraction, to trace Zn(II) and Cd(II) ions in real samples, including soil and water samples, by Flame Atomic Absorption Spectrometry (FAAS). Once the surface coverage value is determined, the surface modification has been investigated and assessed, while having em...

متن کامل

Synthesis and Application of Novel Modified Magnetic Nanocomposite for Solid Phase Extraction of Thallium(I) Ions

In this paper, magnetically multiwalled carbon nanotubes (MMWCNTs) nanocomposite modified by methyl-2-[2-(2-2-[2-(methoxycarbonyl) phenoxy] ethoxyethoxy) ethoxy] benzoate was applied for magnetic solid-phase extraction (MSPE) of thallium(I) ions. Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) spectrometry and vibrat...

متن کامل

Preparation of Sodium Dodecyl Sulfate Modified Pyrrolidine-1-dithiocarboxylic acid Ammonium Coated Magnetite Nanoparticles for Magnetic Solid Phase Extraction of Pb(II) from Water Samples

This paper describes the development of a procedure for Pb(II) ions removal from various water samples after magnetic solid phase extraction (MNPs) by magnetite nanoparticles (Fe3O4 NPs) modified with sodium dodecyl sulfate (SDS) and pyrrolidine-1-dithiocarboxylic acid ammonium (PDTCAA). The synthesis of Fe3O4 NPs was certified by characterization techniques including field emission scanning el...

متن کامل

Preparation of Sodium Dodecyl Sulfate Modified Pyrrolidine-1-dithiocarboxylic acid Ammonium Coated Magnetite Nanoparticles for Magnetic Solid Phase Extraction of Pb(II) from Water Samples

This paper describes the development of a procedure for Pb(II) ions removal from various water samples after magnetic solid phase extraction (MNPs) by magnetite nanoparticles (Fe3O4 NPs) modified with sodium dodecyl sulfate (SDS) and pyrrolidine-1-dithiocarboxylic acid ammonium (PDTCAA). The synthesis of Fe3O4 NPs was certified by characterization techniques including field emission scanning el...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Analytical chemistry

دوره 80 16  شماره 

صفحات  -

تاریخ انتشار 2008